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Abstract. We study the asymptotic behaviour of random walks in i.i.d. random environments on
Zd. The environments need not be elliptic, so some steps may not be available to the random walker.
We prove a monotonicity result for the velocity (when it exists) for any 2-valued environment, and
show that this does not hold for 3-valued environments without additional assumptions. We give
a proof of directional transience and the existence of positive speeds under strong, but non-trivial
conditions on the distribution of the environment. Our results include generalisations (to the
non-elliptic setting) of 0-1 laws for directional transience, and in 2-dimensions the existence of a
deterministic limiting velocity.

1. Introduction

We will study simple random walks in random environments (RWRE) that are degenerate, in
the sense that no ellipticity condition is assumed. Our main results can be illustrated via the
following example.

Example 1.1. (→↑
←↓): Perform site percolation with parameter p on the lattice Z2. From each

occupied vertex x = (x[1], x[2]), insert two directed edges, one pointing up ↑ and one pointing right
→. If x is not occupied, insert directed edges pointing down ↓ and left ← (see Figure 1). Now
start a random walk at the origin o that evolves by choosing uniformly from available arrows at its
current location.

We conjecture that the random walk in this example has a speed in direction ↗ that is strictly
monotone in p ∈ [0, 1], and that there is an infinite recurrent set of sites when p = 1

2
. We do not

know how to prove these conjectures, however when the main results of this paper are applied to
this model we will have established that:

(i) for each p ∈ [0, 1], the walk visits infinitely many sites almost surely,
(ii) for p sufficiently large, the random walk is transient in direction ↗,
(iii) for each p the speed exists almost surely in the direction of � for each � ∈ R2 \ o,
(iv) the speed of the walk in direction ↗ is monotone increasing in p.

We will in fact show that (i) and (ii) follow from certain connectivity properties of a random
directed graph determined by the environment, and studied in an earlier paper [4]. Result (iii)
depends on an extension of a result of Zerner and Merkl (to the non-elliptic setting) that is valid for
i.i.d. RWRE models in 2-dimensions. We will prove a version of (iv) that is valid for all i.i.d. models
where the local environment has only 2 possible values (and show that when 3 values are allowed,
monotonicity may fail).
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Figure 1. Finite regions of the random environment in Example 1.1 for p = .5 and
p = .9 respectively.

The above example is one of many interesting 2-valued examples in which the random walker
chooses uniformly from available steps at each site. Our initial interest was in these models, so
most of our examples will be of this kind, but the proofs apply more generally.

This paper is organised as follows. In Section 1.1 we define random walks in random envi-
ronments, and the directed graph associated to an environment, and state our main results. In
Section 2 we recall from [4, 5] notions and results about connectivity in such random directed
graphs, and examine RWRE results that can be inferred directly from the connectivity properties
of these graphs. In Section 3 we adapt established techniques from the elliptic setting to prove 0-1
laws for directional transience and recurrence in our setting. In Section 4 we use coupling methods
to prove transience, ballisticity and monotonicity of speeds for certain models. Finally in Section
5 we give explicit speed formulae for some 2-valued 2-dimensional models with a simple renewal
structure.

1.1. The model. For fixed d ≥ 2 let E = {±ei : i = 1, . . . , d} be the set of unit vectors in Zd.
Let P = M1(E) denote the set of probability measures on E , and let μ be a probability measure

on P. If γ ∈ P we will abuse notation and write μ(γ) for μ({γ}). Let Ω = PZd
be equipped

with the product measure ν = μ⊗Z
d
(and the corresponding product σ-algebra). An environment

ω = (ωx)x∈Zd is an element of Ω. We write ωx(e) for ωx({e}). Note that (ωx)x∈Zd are i.i.d. with
law μ under ν.

The random walk in environment ω is a time-homogeneous (but not necessarily irreducible)
Markov chain with transition probabilities from x to x+ e defined by

(1.1) pω(x, x+ e) = ωx(e).

Given an environment ω, we let Pω denote the law of this random walk Xn, starting at the origin.
Let P denote the law of the annealed/averaged random walk, i.e. P (·, �) :=

∫
�
Pω(·)dν. Since
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P (A) = Eν [Pω(A)] and 0 ≤ Pω(A) ≤ 1, P (A) = 1 if and only if Pω(A) = 1 for ν-almost every
ω. Similarly P (A) = 0 if and only if Pω(A) = 0 for ν-almost every ω. If we start the RWRE at
x ∈ Zd instead, we write Px for the corresponding probability, so P = Po.

We associate to each environment ω a directed graph G(ω) (with vertex set Zd) as follows. For
each x ∈ Zd, the directed edge (x, x + u) is in Gx if and only if ωx(u) > 0, and the edge set of
G(ω) is ∪x∈ZdGx(ω). For convenience we will also write G = (Gx)x∈Zd. Note that under ν, (Gx)x∈Zd

are i.i.d. subsets of E . The graph G(ω) is equivalent to the entire graph Zd (with directed edges),
precisely when the environment is elliptic, i.e. ν(ωx(u) > 0) = 1 for each u ∈ E , x ∈ Zd. Much
of the current literature assumes either the latter condition, or the stronger property of uniform
ellipticity, i.e. that ∃ε > 0 such that ν(ωx(u) > ε) = 1 for each u ∈ E , x ∈ Zd.

On the other hand, given a directed graph G = (Gx)x∈Zd (with vertex set Zd, and such that
Gx �= ∅ for each x), we can define a uniform random environment ω = (ωx(Gx))x∈Zd. Let |A|
denote the cardinality of A, and set

ωx(e) =

{
|Gx|−1, if e ∈ Gx
0, otherwise.

The corresponding RWRE then moves by choosing uniformly from available steps at its current
location. This gives us a way of constructing rather nice and natural examples of random walks
in non-elliptic random environments: first generate a random directed graph G = (Gx)x∈Zd where
Gx are i.i.d., then run a random walk on the resulting random graph (choosing uniformly from
available steps). This natural class of RWRE will henceforth be referred to as uniform RWRE.
Note that we have chosen above to forbid Gx = ∅. In the setting of uniform RWRE it would be
reasonable to instead allow Gx = ∅ and to define ωx(o) = 1 in this case, with the walker getting
absorbed at x. However (see Lemma 2.2 below) if this happens with positive probability then
the random walker gets stuck on a finite set of vertices almost surely, so in terms of the random
walk behaviour, we lose no interesting cases by prohibiting Gx = ∅. More generally, we have the
following explicit criterion for whether a RWRE gets stuck on a finite set of sites, which depends
only on ω via the connectivity of G(ω). Here V is an orthogonal set if u · v = 0 for every u, v ∈ V .

Theorem 1.2. If there exists a nonempty orthogonal set V ⊂ E such that μ(Go∩V �= ∅) = 1 then
the random walk visits infinitely many sites, P -almost surely. Otherwise the random walk visits
only finitely many sites P -almost surely.

Fix � ∈ Rd\o. Let A+ and A− denote the events that Xn ·�→∞ and Xn ·�→ −∞ respectively.
Clearly when the random walk gets stuck on a finite set of sites, the walker is not directionally
transient in any direction and the speed of the walk is zero. By examining the connectivity
structure of G we are able to prove the following generalisation (to the non-elliptic setting) of a
0-1 law first proved in the uniformly elliptic setting by Kalikow [9].

Theorem 1.3. For random walks in i.i.d. random environments, P (A+ ∪ A−) ∈ {0, 1}.
This allows us to extend the following, obtained by Sznitman and Zerner [13], Zerner [15, 18]

and Zerner and Merkl [19] in the elliptic setting, to random walks in i.i.d. random environments
with no ellipticity assumption.

Theorem 1.4. There exist deterministic v+(�), v−(�) such that

lim
n→∞

Xn · �
n

= v+(�)�A+ + v−(�)�A−, P − a.s.
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By applying Theorem 1.4 to each of the standard basis vectors {ej}dj=1, we have that Xn/n has
a limit P−almost surely. In principle this limit could be random, taking at most 2 possible values.

Theorem 1.5. When d = 2, P (A�) ∈ {0, 1}.
These two theorems imply (as claimed above) that a deterministic velocity v always exists in

the 2-dimensional setting (see Corollary 3.5). We believe that this holds for all d. This is simple
in settings where renewals occur due to a forbidden direction, such as if μ(−e1 ∈ Go) = 0 but
μ(e1 ∈ Go) > 0, and indeed much more can be said in such cases, see e.g. [12] and Section 5 and
Table 1. Of course, existence of speeds does not imply transience unless one can prove that v �= o.
When there is sometimes a drift in direction u but never a drift in direction −u the walk should
be almost surely transient in direction u. Some results of this kind are known in the uniformly
elliptic setting, and we hope to address these issues in a subsequent paper without the assumption
of ellipticity. Instead, in this paper we give a relatively simple proof under the strong assumption
that with sufficiently large probability we have a sufficiently large drift at the origin (see Theorem
4.10), relying on results from [6, 16, 1].

Definition 1.6. An environment is 2-valued when there exist distinct γ1, γ2 ∈ P and p ∈ (0, 1)
such that μ(γ1) = p, μ(γ2) = 1 − p. A graph is 2-valued when there exist distinct E1, E2 ⊂ E and
p ∈ (0, 1) such that μ(Go = E1) = p and μ(Go = E2) = 1 − p. We write (γ1, γ2) or (E1, E2) to
denote the family of 2-valued environments or graphs indexed by p = μ(γ1) or p = μ(E1).

Note that when an environment is 2-valued, the corresponding graph is at most 2-valued. When
a graph is 2-valued, the uniform environment corresponding to that graph is also 2-valued. The
uniform RWRE (→↑ ,←↓) (see Example 1.1) is an interesting 2-valued 2-dimensional example that
has a natural generalisation to higher dimensions. There are many other interesting 2-valued
examples, such as the 2-dimensional uniform random environments (←→↓ , ↑), ( �←→, →↑ ), (�,↔).
The last of these is a degenerate version of the “good-node bad-node” model of Lawler [10], which
has been studied recently by Berger and Deuschel [2].

The following theorem is one of the main results of this paper.

Theorem 1.7. Fix any 2-valued environment with μ(γ1) = p, μ(γ2) = 1− p. If for every p there
exists v[p] such that P (v[p] = limn→∞ n−1Xn) = 1, then each coordinate of v[p] is monotone in p.

In fact we’ll prove a more comprehensive version of this in Section 4.1, via a simple coupling
argument. See Theorem 4.1. Note that this implies monotonicity of the speed as a function of
p for all 2-valued models in 2 dimensions. We also show that the corresponding statement for
3-valued models with probabilities (p(1− q), (1− p)(1− q), q) (where q is fixed) fails in general.

2. Random walk properties obtained from the geometry of connected clusters

Definition 2.1. Given a directed graph G:
• We say that x is connected to y, and write x→ y if: there exists an n ≥ 0 and a sequence
x = x0 x1, . . . , xn = y such that xi+1 − xi ∈ Gxi

for i = 0, . . . , n − 1. Let Cx = {y ∈ Zd :
x→ y}, and By = {x ∈ Zd : x→ y}.
• We say that x and y are mutually connected, or that they communicate, and write x↔ y
if x→ y and y → x. LetMx = {y ∈ Zd : x↔ y} = Bx ∩ Cx.
• A cluster M is said to be gigantic in Zd if every Zd-connected component of Zd \ M is
finite.
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For the G arising from the model of Section 1.1, set

θ+ = ν(|Co| =∞), θ− = ν(|Bo| =∞), and θ = ν(|Mo| =∞).

In this section we present a number of results for RWRE, that depend only on the clusters
(Cx)x∈Zd and (Mx)x∈Zd of the graph G(ω) induced by the environment ω.

Whether the RWRE X gets stuck on a finite set of sites can be characterized completely in
terms of the law of the connected cluster Co. If Co is almost surely infinite, then so is Cx for each x,
so the random walk will eventually escape from any finite set of sites. On the other hand if Co is
finite with positive probability, then we will see that there is some δ > 0 such that each time the
walk reaches a new ‖Xn‖∞ maximum it has probability at least δ of being at a site with finite C,
whence the walk will eventually get stuck. These arguments are formalised in the following result.

Lemma 2.2. Fix d ≥ 2, and let Xn be the random walk in i.i.d. random environment.

(i) θ+ = 1⇒ P (supn≥1 |Xn| <∞) = 0 (i.e. the RWRE visits infinitely many sites).
(ii) θ+ < 1⇒ P (supn≥1 |Xn| <∞) = 1 (i.e. the RWRE gets stuck on a finite set of points).

Proof. To prove (i), note that ν-a.s., Cx(ω) is infinite for every x. Now fix such an ω and assume
that Xn visits only finitely many sites. Then it must visit some site y infinitely often. Let z ∈ Cy.
There is an admissible path connecting y to z which has a fixed positive probability of being
followed on any excursion of Xn from y. Therefore Xn will eventually visit z. Since Cy is infinite
ν-a.s., this contradicts the assumption.

To prove (ii), suppose that θ+ < 1. Define

n0 = inf{n ≥ 1 : ∃F ⊂ Zd with |F | = n and ν(Co = F ) > 0}
and choose F satisfying |F | = n0 and δ = ν(Co = F ) > 0. Note that ifMy = F for some y ∈ F ,
thenMy′ = F for each y′ ∈ F . So by translation invariance of ν, for each y ∈ F ,

(2.1) ν(Mo = F ) = ν(My = F ) = ν(Mo = F − y).

Furthermore, for y ∈ F , if F = Cy �My, then there exists y′ ∈ Cy \My. Since y /∈ Cy′ ⊂ Cy the
set G = Cy′ � F satisfies |G| < n0, and ν(Co = G − y′) = ν(Cy′ = G) > 0. This would contradict
the definition of n0. So in fact ν(My = F ) = ν(Cy = F ) for each y ∈ F . Therefore by (2.1),

ν(Co = F ) = ν(Co = F − y),

for every y ∈ F .
For each x ∈ Zd we can find a y ∈ F such that x minimizes ‖z‖∞ over z ∈ F +x− y (just find a

unit vector e ∈ Zd such that ‖x+ e‖∞ > ‖x‖∞, and then choose y so that the projection of F − y
in the direction of e is ≥ 0). Then

(2.2) ν(Cx = F + x− y) = ν(Co = F − y) = ν(Co = F ) = δ.

For k ≥ 1 define

Tk := inf{m ≥ 1 : ‖Xm‖∞ = k(n0 + 1)}.
Let Fk reveal Xm for m < Tk, and the environment ωz for ‖z‖∞ < k(n0 + 1). Then

P (Tk =∞ | Fk−1) ≥ P (|CXTk−1
| ≤ n0 | Fk−1) ≥

∑
y∈F

P (CXTk−1
= XTk−1

+ F − y | Fk−1).
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We have shown above that y can be chosen so that XTk−1
+ F − y is disjoint from {z : ‖z‖∞ <

(k− 1)(n0 + 1)} (the region whose environment is revealed by Fk−1). Applying (2.2) to that y we
conclude that

P (Tk <∞ | Fk−1) ≤ (1− δ)�{Tk−1<∞}.

Iterating k times, P (Tk <∞) ≤ (1− δ)k, and sending k →∞ we obtain

0 = P (∩∞k=1{Tk <∞}) = 1− ν
(
∪∞k=1 {Tk =∞}

)
,

which establishes the result. �
On the event that the walk gets stuck on a finite set of sites, the asymptotic velocity is trivially

zero and the walk is not directionally transient in any direction, almost surely. Hence, by Lemma
2.2, Theorems 1.3, 1.4 and 1.5 hold trivially when θ+ < 1. Our principal interest will therefore be
in situations where the following condition holds:

(2.3) θ+ = 1.

Note that our general hypotheses rule out the possibility that Cx = {x}. As remarked above, at
the cost of more cumbersome notation, we could have included the possibility of Gx = ∅ in our
models. In this case also θ+ < 1 and the proof of Lemma 2.2(ii) remains valid.

Together with Lemma 2.2, the following simple criterion from [4] proves Theorem 1.2.

Lemma 2.3. θ+ = 1 if and only if there exists an orthogonal set V of unit vectors such that
μ(Go ∩ V �= ∅) = 1.

It follows immediately that for the uniform RWRE (and indeed RWRE for any environment
giving rise to such graphs) (→↑ ,←↓) of Example 1.1, and similarly for the models (�,↔), (←→↓ , ↑),
the walk visits infinitely many sites almost surely, by choosing e.g. V = {↑,←} in each case. On
the other hand if for example {→↑ ,←↑ ,

←↓ ,→↓ } is a subset of the possible values for Go under μ
then the walk has finite range.

From [4] (see also [5] for improvements to some of these values), the following Lemma imme-
diately implies that the RWRE is transient in the following situations: when Go(ω) ∈ {→↑ ,←↓}
almost surely (as in Example 1.1), with μ(Go = →↑ ) > .83270; when Go(ω) ∈ {←→↓ , ↑} almost
surely with μ(Go =↑) > .83270.

Lemma 2.4. For any environment ω such that |Cx| = ∞ and |Mx| < ∞ for every x ∈ Zd, the
random walk in environment ω is transient Pω-almost surely.

Proof. Starting from any x, we visit infinitely many sites. Thus the time Tx taken for the walk to
exitMx is finite, and any vertex reached thereafter is necessarily in Cx \Mx. Hence the random
walk never returns to x after time Tx. �

For some of the most interesting models, such as the uniform RWRE (�,↔), Co is infinite
almost surely whileMo can be finite or infinite. In particular, the Markov chain in a typical fixed
environment ω the Markov chain is not irreducible. Therefore, when considering recurrence, one
should ask if the origin is visited infinitely often, given thatMo is infinite andMo = Co.
Lemma 2.5. For any environment ω such that |Cy| =∞ for every y and such that there is a unique
infinite mutually connected cluster M∞, we have that {x : Xn = x infinitely often} ∈ {∅,M∞},
Pω-almost surely.
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Proof. Let R = {x : Xn = x infinitely often} be the recurrent set. If x ∈ R, then Cx ⊂ R by the
argument for (i) of Lemma 2.2. Clearly also R ⊂ Mx (every site in R must be reachable from
x and vice versa), almost surely. Since Mx ⊂ Cx this implies that Cx = R =Mx and also that
|Mx| =∞ (soMx =M∞). �

The above argument also shows that if there are multiple distinct infiniteMx then R is either
empty or is equal to exactly one such infiniteMy. For the uniform RWRE (�,↔), [4] shows that
a unique clusterM∞ exists ν-a.s., as in Lemma 2.5, for every p ∈ (0, 1). Combining recent results
of Berger and Deuschel [2] together with the argument of Theorem 3.3.22 of [14] (attributed there
to Kesten) it follows that in this model, R =M∞, P -a.s..

Another simple result is the following, which by results of [4] applies to the models (→↑ ,←↓)
and (←→↓ , ↑) for certain values of p.

Lemma 2.6. Let ω satisfy |Cy| =∞ for every y and suppose there exists x such thatM =Mx is
gigantic. Then TM ≡ inf{n ≥ 0 : Xn ∈M} <∞ and Xn ∈M for all n ≥ TM, Pω-almost surely.

We now turn to a result that allows us to improve on transience and prove directional transience
in some situations. Given a vector v ∈ Rd \ o, and N ≥ 1, define A−N(v) = {y : y · v < −N}.
Theorem 2.7. Assume that θ+ = 1, and suppose that there is a vector v ∈ Rd \ o such that

(a) ν
(
∪N≥1 {Co ∩ A−N(v) = ∅}

)
= 1, and

(b) μ({∃e ∈ Go : v · e > 0) > 0.

Then P (lim infXn · v =∞) = 1, i.e. the random walk is a.s. transient in direction v.

Proof. Without loss of generality, |v| = 1. For x ∈ Zd define Fx(v) := {y : (y − x) · v < 0} and
Cv := {x : Cx ∩ Fx(v) = ∅}. We show that under the hypotheses of the theorem:

(i) ν(o ∈ Cv) = ε for some ε > 0
(ii) P

(
supnXn · v =∞

)
= 1

(iii) for all M <∞, P
(
lim infn→∞Xn · v ≥M

)
= 1.

Note that the desired result clearly follows from (iii).
To prove (i), note that the result is trivial if for every e ∈ E such that e · v < 0 we have

μ(e ∈ Go) = 0. So assume otherwise. Then there exist e ∈ E , ε, δ > 0 such that e · v ≤ −δ and
μ(ωo(e) > ε) > ε. Assume that (i) fails. Then we can construct a sequence o = x0, x1, . . . such that
xi ∈ Cxi−1

∩ Fxi−1
(v). Moreover we can identify xi without looking at the environment at any site

z such that (z−xi) · v < 0. Therefore any such site has probability at least ε2N of being connected
to a site that is at least distance Nδ in the direction of −v (from o). We have infinitely many
independent trials in which to observe such a connection. Thus almost surely we are connected at
least distance Nδ in the direction −v, for each N , contradicting (a).

To prove (ii), let Wn = Xn ·v and let Uv denote the set of unit vectors e ∈ Zd such that v ·e ≥ 0.
For any record levels (ze)e∈Uv and any N ≥ 0, consider

{w ∈ Zd : w · v ≥ −N and w · e ≤ ze ∀e ∈ Uv}.
We claim this is finite. To see this, write w =

∑
wiui, where we select a basis ui from Uv. If

ui ·v = 0, then ±ui ∈ Uv and we have z−ui
≤ wi ≤ zui

. If ui ·v > 0 then −N ≤ w ·v =
∑

wjuj ·v ≤∑
j �=i zuj

uj · v + wiui · v so in fact

zui
≥ wi ≥

−N −
∑

j �=i zuj
uj · v

ui · v
.
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In other words, there are only finitely many possibilities for each wi.
By Lemma 2.2, Xn visits infinitely many sites. Since infnWn > −∞ (which follows from the

fact that ν(∪N≥1{Co ∩ A−N(v) = ∅}) = 1), the above argument shows that the random times
T1 = inf{n ≥ 1 : ∃e ∈ Uv;Xn · e > Xm · e for all m < n} and

Ti = inf{n > Ti−1 : ∃e ∈ Uv;Xn · e > Xm · e for all m < n}, i = 2, 3, . . .

are almost-surely finite, since eventually any set of record levels will be surpassed.
Let Vx = {y : (y − x) · e ≥ 0 ∀ e ∈ Uv}. Then each time Ti is the first hitting time of VXTi

, so

the environment in VXTi
is unexplored. Note that (b) implies that there exists εv > 0 and e ∈ Uv

with e · v > 0 such that μ(ωo(e) > εv) > εv. Set U0
v = {e ∈ Uv : e · v > 0, μ(ωo(e) > εv) > εv},

and cv = {v · e : e ∈ U0
v } > 0. Then for each k ∈ N, there is probability at least εkv of there being

an admissible path from XXTi
consisting of k arrows from U0

v . Following this path keeps us in the

previously unexplored region VXTi
. So given this, there is probability at least εkv that the next k

steps of Xn will follow this path. In other words, for each i, k ∈ N, there is probability at least
ε2kv under P , independent of the history of the walk up to time Ti, that {(XTi+k −XTi

) · v > cvk}.
Therefore for each k ∈ N there will eventually be an i such that {(XTi+k−XTi

)·v > cvk}. Recalling
that infWn > −∞, we conclude that supXn · v =∞.

To prove (iii), fix M1 ≥ 1 and define T1 to be the first hitting time of M1 by W , i.e.

T1 = inf{n > 0 : Wn ≥M1},
which is P -almost surely finite by (ii). Given Ti <∞, let

Ni = inf{k ≥ 1 : there exists a G-admissible path (of length k) �ηk : XTi → FXTi
(v)}.

If Ni <∞ set Mi+1 = Mi +Ni and

Ti+1 = inf{n > Ti : Wn ≥Mi+1}.
Note that {Ni = ∞} = {XTi ∈ Cv} and if Ni = ∞ then Wn ≥ Mi for all n ≥ Ti. Moreover,
to determine if Ni ≤ m, we need only look at the environment within distance m of XTi , so
if Ni < ∞ then the walk visits an unexplored environment at time Ti+1. In other words, the
event that XTi ∈ Cv depends only on the unexplored environment in Zd \ FTi(v), so that by (i),
I = inf{i : XTi ∈ Cv} has a geometric distribution with parameter ε > 0.

Thus P -almost surely there is a Ti <∞ such that Wn ≥Mi ≥M1 for all n ≥ Ti. Since M1 was
arbitrary, this proves (iii). �

Corollary 2.8. Assume that θ+ = 1. For each d ≥ 2 there exists εd such that the following holds:
If there exists an orthogonal set V of unit vectors such that μ(Go ⊂ V ) > 1− εd, then the random
walk is transient in direction v =

∑
e∈V e.

Proof. The proof of [4, Theorem 4.2] verifies Theorem 2.7 (a) for v =
∑

e∈V e, while condition (b)
holds with εv = 1− εd by the assumption that μ(Go ⊂ V ) > 1− εd. �

When applied to the models (→↑
←↓) and (←→↓ ↑) and using [4, Corollary 4.3], Corollary 2.8

improves our transience results to transience in directions (1, 1) and (0, 1) when μ(Go = →↑ ) >
0.83270 and μ(Go =↑) > 0.83270 respectively. The former result is improved to μ(Go = →↑ ) >
0.7491 via the following Corollary.
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Corollary 2.9. Any 2-dimensional RWRE model with 2-valued graph Go ∈ {→↑ ,←↓} is transient
in direction (1, 1) when μ(Go = →↑ ) > p ↑←↖c , where p ↑←↖c is the critical occupation prob. for oriented
site percolation on the triangular lattice.

Proof. As in [5], when p = μ(Go = →↑ ) > p ↑←↖c , Co has NW and SE boundaries with asymptotic
slopes ρ(p) < −1 and 1/ρ(p) > −1 respectively. In particular for each such p, the assumptions of
Theorem 2.7 hold with v = (1, 1). �

We believe that a similar argument shows directional transience in the direction ↑ for any model
Go ∼ (←→↓ , ↑), provided μ(Go =↑) > p

↑↓↖↙←
c , where the latter critical percolation threshold is defined

in [4]. But we have not checked this in detail.

3. The regeneration structure

Assuming ellipticity, Theorems 1.4 and 1.5 have been proved by Sznitman and Zerner [13], Zerner
[15] and Zerner and Merkl [19, 18], however some parts of their arguments don’t actually rely on
ellipticity. In this section we prove Theorems 1.4 and 1.5 (i.e. without any ellipticity assumption),
identifying the key elements necessary to make the regeneration arguments work in general. We
believe strongly that these extensions deserve a proper and careful treatment. In particular, the
proofs of Zerner and coauthors rely on Kalikow’s 0-1 law, and our main task is to reprove this 0-1
law with no ellipticity assumption, i.e. to prove Theorem 1.3. Since we will follow the basic outline
of the arguments referenced above, it is worth isolating the novel features of what follows. There
are basically two:

• Replacing “ellipticity at all times” by “ellipticity at record times”. In other words, basing
the argument on having positive probability of a fixed sequence of steps following time t,
when t is only a record time rather than an arbitrary time.
• Identifying (2.3) and (3.1) as the appropriate conditions to replace uniform ellipticity, in
the sense that they give us “ellipticity at record times”.

For fixed d ≥ 2 we define a slab to be a region between any two parallel d − 1 dimensional
hyperplanes in Rd. Let Hej be the set of slabs S for which there exists a constant H = H(S) ∈ N

such that (S +Hej) ∩ S = ∅. This is the set of slabs with finite width in direction ej . Note that
for every d-dimensional slab S, there exists some j ∈ {1, 2, . . . , d} such that S ∈ Hej . Moreover,
if v is a normal to the hyperplanes defining the slab, then S has finite width in the direction u ⇔
u · v �= 0.

In preparation for proving Theorem 1.3, we introduce the following condition, which (up to
reflections of the directions) says that the RWRE is truly d-dimensional:

(3.1) μ(ei ∈ Go) > 0 for i = 1, . . . , d.

Roughly speaking, we use the conditions (3.1) and (2.3) to replace the assumption of ellipticity
in the regeneration arguments (that date back to [9] in the uniformly elliptic setting), and then
prove the theorem both when these conditions hold, and when they fail.

Lemma 3.1. Assume (2.3) and (3.1). Then for each unit vector v, P -almost surely,

lim inf
n→∞

Xn · v ∈ {−∞,+∞}.
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Proof. Let A = {e ∈ E : μ(e ∈ Go) > 0}, B+ = {e ∈ E : e · v > 0}, and B− = {e ∈ E : e · v < 0} =
−B+. Note that {e1, . . . , ed} ⊂ A by (3.1). If B− ⊂ Ac then the random walk is transient in every
direction in B+ ∩ A (e.g. by Theorem 2.7), hence it is also transient in direction v. So assume
there exists some e− ∈ B− ∩A. Without loss of generality we can assume that e− ∈ {±e1}.

Assume that the claim of the lemma is false, i.e. there exists r ∈ R such that lim infn→∞Xn·v = r.
Then the slab S = {x ∈ Rd : r−1 ≤ x ·v ≤ r+1} is visited infinitely often. Suppose that there are
actually infinitely many sites in S that are visited. Then the set of sites of S visited is unbounded
in the direction of at least one vector e ∈ U1 = {±ej : j �= 1}. Let T1 = 1, and let

Tk+1 = inf{n > Tk : Xn ∈ S and ∃e ∈ U1 s.t. Xn · e > max{Xm · e : m < n,Xm ∈ S}}
be the times the walk reaches a new record level within S. These are all finite, and by definition,
the sites S ∩ (XTk

+ Ze−) were not explored prior to time Tk. Let H < ∞ be the width of S
in the direction e1, defined above. With probability at least εH+1 there is an admissible path,
just using e− arrows, of length at most H + 1, that connects XTk

to a point z outside S, with
z · v ≤ r − 1. So with probability at least ε2(H+1), the random walk follows this path and exits S
in at most H + 1 steps. This must therefore occur almost surely, for infinitely many k. It follows
that lim infn→∞Xn · v ≤ r − 1, which is a contradiction.

Thus in fact there are only finitely many points of S that get visited. Therefore at least one
point gets visited infinitely often. Let R be the set of sites in S that are visited infinitely often.
We conclude that R is finite but non-empty. We may therefore choose an element x of R such
that x · v is minimal. Since every y ∈ Cx is also visited infinitely often (by the argument for (i) of
Lemma 2.2), we must have that (y − x) · v ≥ 0 for each y ∈ Cx, i.e. x ∈ Cv. Since this happens
with positive probability, we in fact have ν(o ∈ Cv) > 0. The proof of Theorem 2.7 shows that if
μ(e1 ∈ Go) > 0 and (2.3) holds, then on the event that o ∈ Cv we have lim infXn · v = ∞ (a.s.),
which contradicts the definition of r. �

Note that we can similarly get that lim infXn · e1 ∈ {−∞,+∞}, P -almost surely under the
weaker assumptions (2.3) and μ(e1 ∈ Go) > 0.

For any RWRE, and fixed � ∈ Rd \ o, recall that A+ = A+(�) is the event that the walk is
transient in direction �, i.e. A+ = {Xn · � → +∞}, and A− = A−(�) = {Xn · � → −∞}. Let
O = (A+ ∪ A−)

c and let Om be the event that both Xn · � ≤ m and Xn · � ≥ m infinitely often.
For k ≥ 0 let Tk = inf{n : Xn · � ≥ k}.
Lemma 3.2. Assume (2.3) and (3.1). Then P (O) = P (∩n∈ZOn).

Proof. Firstly note that ∩n∈ZOn ⊂ ∪n∈ZOn ⊂ O so in particular if P (O) = 0 then the result
is trivial. By Lemma 3.1 applied to both � and −�, P -almost surely on the event O we have
lim infXn · � = −∞ and lim supXn · � = +∞. This implies that ∩n∈ZOn occurs almost surely on
the event O as required. �

Lemma 3.3. If P (A+) > 0 then

(3.2) P (A+ ∩ {Xn · � ≥ 0 ∀n ≥ 0}) > 0.

If also (2.3) and (3.1) then P (O) = 0.

Proof. Suppose that P (A+) > 0. Let Pω,y denote the quenched law of the RW in the environment
ω, starting from X0 = y, and recall that Py is the corresponding annealed law. For any x and
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n, let A(x, n) be the event A+ ∩ {Xn = x and Xk · � ≥ x · � ∀k ≥ n}. Since P (A+) > 0, we
must have P (A(x, n)) > 0 for some x and n. By translation invariance, P−x(A(o, n)) > 0. By
the Markov property, Pω,−x(A(o, n) | Xn = o) = Pω,o(A(o, 0)) for every environment ω. Therefore
Pω,−x(A(o, n)) ≤ Pω,o(A(o, 0)). Integrating out ω we get 0 < P−x(A(o, n)) ≤ P (A(o, 0)), which
proves (3.2).

To prove that P (O) = 0, note that by Lemma 3.2, almost surely on the event O, all Om occur
and therefore lim supXn · � = ∞. It is therefore sufficient to show that almost surely O does not
occur on the event lim supXn · � = ∞, under the assumptions of the lemma. Let δ = P (Xk · � ≥
0 ∀k ≥ 0) ≥ P (A(o, 0)) > 0. Let T0 = 0. Given Tk < ∞, let Dk = inf{n > Tk : Xn · � < XTk

· �}.
If Dk <∞, let Mk = sup{Xn · � : n ≤ Dk}, and let Tk+1 = inf{n > Dk : Xn · � ≥Mk + 1}. Let K
be the first value of k such that Tk =∞ or Dk =∞.

At time Tk < ∞ the walker has not explored any of the environment in direction � from XTk
,

so P (Dk = ∞ | Tk < ∞) = δ > 0. Therefore on the event that lim supXn · � = ∞, we have
repeated independent trials, and so eventually will have a k with Dk = ∞, i.e. K < ∞ a.s. on
{lim supXn · � =∞}. But when K <∞, some Om does not occur, so by Lemma 3.2 neither does
O. �
Proof of Theorem 1.3. If (2.3) fails, then by Lemma 2.2, the random walk a.s. only visits finitely
many sites. Thus P (O) = 1. So assume (2.3). Let B = {i = 1, . . . , d : μ(ei ∈ Go) + μ(−ei ∈ Go) >
0}, and write

� =
∑
i∈B

�[i]ei +
∑
i/∈B

�[i]ei = �B +
∑
i/∈B

�[i]ei.

If �B = 0 then Xn · � = 0 for all n almost surely so that P (O) = 1. Otherwise �B �= 0 and
since Xn ·

∑
i/∈B �

[i]ei = 0 for all n, we have that O(�) ⇐⇒ O(�B), A+(�) ⇐⇒ A+(�B) and
A−(�) ⇐⇒ A−(�B). This has reduced the problem to a |B|-dimensional one, so without loss
of generality we may assume that |B| = d. Then by considering reflections of the axes, we may
further assume that (3.1) holds. In this case, if P (A+) > 0 then P (O) = 0 by Lemma 3.3. Similarly
P (A−) > 0⇒ P (O) = 0 by applying Lemma 3.3 to −�. The result then follows from the fact that
P (O) + P (A+ ∪ A−) = 1. �
Proof of Theorem 1.4. We have the same hierarchy of possibilities as in Theorem 1.3. If (2.3)
fails, then the random walk a.s. only visits finitely many sites, and n−1Xn → 0 a.s. Likewise, if
all symmetric versions of (3.1) fail then the problem reduces to a lower dimensional one (where
some symmetric version of (3.1) with smaller d does hold). Therefore without loss of generality we
assume that both (2.3) and (3.1) hold. By Theorem 1.3 there are two cases to consider, namely
P (A+ ∪A−) = 1 and P (A+ ∪ A−) = 0.

The former is addressed in Theorem 3.2.2 of [14], for i.i.d. uniformly elliptic environments,
drawing on ideas that go back to [9], together with contributions of Zerner and [13]. As pointed
out in [15], the proof does not actually require uniform ellipticity, but works simply assuming
ellipticity. In fact, even ellipticity is used only to obtain (3.2). In other words, the argument of
[14] applies to IID environments satisfying (3.2) and Po(A+ ∪ A−) = 1. In particular, this proves
the theorem when P (A+ ∪A−) = 1.

For completeness, we sketch the argument. Adopting notation from the proof of Lemma 3.3,
let τ1 = DK . On the event A+, τ1 acts as a regeneration time, so conditional on A+, the process
X̂n = Xτ1+n − Xτ1 and the environment ω̂x = ωx+Xτ1

(for x · � ≥ 0) are independent of the
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environment and walk observed up to time τ1. This allows one to construct additional regeneration
times τ1 < τ2 < . . . such that (conditional on A+) the X(τk+n)∧τk+1

−Xτk are IID segments of path.
If E[τ1] < ∞, the strong law of large numbers now implies the existence of a deterministic speed
v+ on the event A+. If E[τ1] =∞, one appeals to a calculation [14, Lemma 3.2.5] due to Zerner,
which shows that

(3.3) E[(Xτk+1
−Xτk) · �|A+] ≤

C

P (D0 =∞)
<∞.

This estimate is enough to give, by the law of large numbers again, that the speed v+ exists on
A+ and = 0. Note that the proof of [14, Lemma 3.2.5] is presented with � = e1, in which case the
left side of (3.3) is actually shown to equal 1/P (D0 =∞). With general � we have only been able
to verify the inequality given in (3.3), but that certainly suffices for our purposes.

It remains to show the case P (A+ ∪ A−) = 0. This is addressed in Theorem 1 of [15], again
assuming ellipticity. But the proof carries over verbatim if ellipticity is replaced by the following
weaker condition:

If {x ∈ Zd : a ≤ x · � ≤ b} is visited by Xn infinitely often,

then there a.s. exist n,m with Xn · � < a and Xm · � > b.

The latter property holds in our setting, by applying Lemma 3.1 to � and −�. �

Corollary 3.4. Assume that P (A�) ∈ {0, 1} for each � ∈ {e1, . . . , ed}. Then there exists a
deterministic v ∈ Rd such that

lim
n→∞

Xn

n
= v.

Proof. As in Corollary 2 of [15], apply Theorem 1.4 to each coordinate direction. Note that by
Theorem 1.3, P (Aek) ∈ {0, 1} ⇒ P (A−ek) ∈ {0, 1}. �

Proof of Theorem 1.5. Zerner and Merkl prove this (Theorem 1 of [19], see also [18]) assuming
ellipticity. In fact, the proof is valid under the following conditions: P (A+∪A−) ∈ {0, 1}; P (A+) >
0 ⇒ P (Xn · � ≥ 0 ∀n) > 0; P (A−) > 0 ⇒ P (Xn · � ≤ 0 ∀n) > 0. The first property holds in our
setting, by Theorem 1.3. The second and third properties hold by Lemma 3.3. �

Corollary 3.5. When d = 2 there exists a deterministic v ∈ R2 such that

lim
n→∞

Xn

n
= v.

Proof. Corollary 3.4 and Theorem 1.5. �

4. Properties obtained by coupling

In this section we use coupling methods to prove a number of results, beginning with the
monotonicity result of Theorem 1.7.
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4.1. Monotonicity. For a RWRE X in an environment taking at most countably many values
γi, i ∈ N, we define Ei = {e ∈ E : γi(e) > 0} and

N i

n = {0 ≤ m < n : ωXm = γi}.
We also let ui =

∑
e∈E γ

i(e)e be the local drift of environment γi.
For a 2-valued environment we also write Nn = N 1

n. Note that in this case, for almost every
environment, N i

n →∞ almost surely for i = 1, 2 even if the walker gets stuck on ≥ 2 sites.

Theorem 4.1. For any 2-valued model (γ1, γ2) with γ1, γ2 �= ∅, there exists a coupling under which
for all 0 ≤ p < p′ ≤ 1 the following hold:

(i) Nn[p
′] ≥ Nn[p] almost surely,

(ii) for every e such that e ∈ E1∩ (E2)c and −e /∈ E1, Xn[p
′] · e ≥ Xn[p] · e a.s. for every n ≥ 0,

(iii) Bn = {X [1]
n [p′] ≥ X

[1]
n [p]} occurs for infinitely many n, almost surely if u

[1]
1 > u

[1]
2 .

(iv) Let V [p] = limn→∞ n−1Xn[p] (which exists a.s. by Theorem 1.4, but could in principle be
random). Then for any u �= o,
(a) V [p′] · u ≥ V [p] · u a.s. if (u1 − u2) · u ≥ 0, and
(b) V [p′] · u ≤ V [p] · u a.s. if (u1 − u2) · u ≤ 0.

Proof. Let {Ux}x∈Zd, {Y 1
n}n∈N, and {Y 2

n}n∈N be independent random variables with distributions
U [0, 1], γ1, and γ2 under P respectively. Define ω[p] = (ωx[p])x∈Zd by

ωx[p] =

{
γ1 if Ux < p

γ2 otherwise.

Set X0[p] = 0 and given X0[p], . . . , Xn[p] define,

Xn+1[p]−Xn[p] =

{
Y 1
k , if ωXn [p] = γ1, and Nn[p] = k − 1

Y 2
k , if ωXn [p] = γ2, and n−Nn[p] = k − 1.

One can easily check that X[p] is a RWRE in environment ω[p].
For the first claim, let p′ > p. Define T1 = inf{n ≥ 1 : Nn[p] �= Nn[p

′]} = inf{n ≥ 1 :
Nn[p] < Nn[p

′]} and T ∗1 = inf{n ≥ T1 + 1 : Nn[p
′] = Nn[p]}. The claim certainly holds up to

time T ∗1 . Therefore if T1 = ∞, or if T1 < ∞ and T ∗1 = ∞, then there is nothing to prove. So
assume T1, T

∗
1 <∞. We have NT ∗1

[p′] = NT ∗1
[p]. Under the given coupling XT ∗1

[p′] and XT ∗1
[p] have

therefore taken exactly the same number of steps in each direction so that XT ∗1
[p′] = XT ∗1

[p], and
the walks are recoupled. We can now repeat the above argument with T2 = inf{n > T ∗1 ≥ 1 :
Nn[p] �= Nn[p

′]} = inf{n ≥ 1 : Nn[p] < Nn[p
′]} and T ∗2 = inf{n ≥ T2 + 1 : Nn[p

′] = Nn[p]}, etc. to
get (i).

Suppose e ∈ E1 ∩ (E2)c but −e /∈ E1. Then the number of e-steps taken by the walk X[p] up to
time n is #{k ≤ Nn[p] : Y

1
k = e}. The number of −e steps taken is #{k ≤ n−Nn[p] : Y

2
k = −e}.

The second claim now follows since Nn[p] is increasing in p for each n under this coupling.

To prove (iii), let W r
j = �{Y r

j =e1} − �{Y r
j =−e1}. Observe that E[W 1

j ] = u
[1]
1 > u

[1]
2 = E[W 2

j ] and

X [1]
n [p′]−X [1]

n [p] =

Nn[p′]∑
j=Nn[p]+1

W 1

j −
n−Nn[p]∑

j=n−Nn[p′]+1

W 2

j ,



14 HOLMES AND SALISBURY

where each of these sums contains Nn[p
′]−Nn[p] ≥ 0 elements. Define S0 = 0 and for i ∈ N,

Ri = inf{n > Si−1 : Nn[p
′] > Nn[p]} and Si = S∗i ∨ S∗∗i , where

S∗i = inf{n > Ri : Nn[p] = NRi
[p′]} and S∗∗i = inf{n > Ri : n−Nn[p

′] = Ri −NRi
[p]}.

Note that since Nn[p
′] ≥ Nn[p] for all n and the walks are at the same location whenever Nn[p

′] =
Nn[p] we also have that Ri <∞ for each i almost surely (while the walks stay together, consider
the times at which they reach a new record level). Then also Si < ∞ since both Nn and n − Nn

are increasing to +∞ (this property does not depend on p ∈ (0, 1)).
By definition, NSi

[p′] ≥ NSi
[p] ≥ NRi

[p′] ≥ NSi−1
[p′] so the intervals

{[
NSi

[p] + 1, NSi
[p′]

]}
i≥1

are disjoint (possibly empty). Similarly Si−NSi
[p] ≥ Si−NSi

[p′] ≥ Ri −NRi
[p] ≥ Si−1−NSi−1

[p]

so the intervals
{[

Si−NSi
[p′]+1, Si−NSi

[p]
]}

i≥1 are disjoint. It follows that the random variables

Δi ≡ X
[1]
Si
[p′]−X

[1]
Si
[p] =

NSi
[p′]∑

j=NSi
[p]+1

W 1

j −
Si−NSi

[p]∑
j=Si−NSi

[p′]+1

W 2

j , i ∈ N

are sums of random variables that are independent of the random variables summed in {Δj}j<i.
Note that the lengths of the intervals we sum over need not be independent.

Fix k ∈ N and let Ai = {Δi ≥ 0}. Then either

P
( ∞
∩
i=k

Ac
i

)
= P (Ac

k)
∞∏

j=k+1

P
(
Ac

j

∣∣∣ j−1

∩
i=k

Ac
i

)
,(4.1)

or the left hand side of (4.1) is zero. By the law of large numbers, and using the fact that

E[W 1
j ] > E[W 2

j ], there is some ε > 0 such that P
( ∞
∩

m=1
{
∑m

i=1W
1
j ≥

∑m
i=1W

2
j }
)
> ε. Thus

P
(
Ac

j

∣∣∣ j−1

∩
i=k

Ac
i

)
< 1− ε

for every j. It follows then that (4.1) is equal to zero and hence

P (Bn i.o.) = lim
k→∞

P (
∞
∪
i=k

Bi) ≥ lim
k→∞

P (
∞
∪
i=k

Ai) = 1.

To prove (iv), note that

Xn

n
=
Nn

n

1

Nn

Nn∑
j=1

Y 1

j +

(
1− Nn

n

)
1

n−Nn

n−Nn∑
j=1

Y 2

j = V 2

n + (V 1

n − V 2

n )
Nn

n
,(4.2)

where V i
n ≡ 1

N i
n

∑N i
n

j=1 Y
i
j → ui a.s. as n→∞ for i = 1, 2 by the LLN and the fact that N i

n →∞.

Therefore for each p ∈ [0, 1],

(4.3) V [p] · u = u2 · u+ lim
n→∞

(u1 − u2) · u
Nn[p]

n
.

The limits on the right therefore exist. Moreover, on this probability space Nn[p] is almost surely
increasing in p, so the quantities V [p] · u are a.s. increasing in p if (u1 − u2) · u ≥ 0, and a.s.
decreasing in p if (u1 − u2) · u ≤ 0. �



RWDRE 15

Note that as stated, (iv) of Theorem 4.1 is a statement about coupled random variables. But
when d = 2 we know that deterministic speeds exist, so this becomes simply a statement about
monotonicity of those speeds.

Theorem 4.1 applied to each of the 2-valued RWRE models (←→↑ , ↓), (←→↑ ,↔) and (←→↑ ,←→↓ )
shows that there exists a coupling under which Xn(p) · (0, 1) is almost surely increasing in p for all
n. Applied to the model (→↑ ,←↓) the theorem gives a coupling under which Xn[p] · (1, 1) is almost
surely increasing in p for all n. This in turn implies that for p ≥ 1

2
the probability that the model

is transient in the direction −(1, 1) is at most 1
2
, and by Theorem 1.5, it must be 0.

Theorem 4.1(ii) implies that in the uniform RWRE on (�→ , �← ), X
[1]
n [p] is monotone in p, but

it is easily checked that for the given coupling, this statement may fail for the uniform RWRE on
(�→ , �←→). On the other hand, Theorem 4.1(iii) establishes monotonicity for the latter model in
a weaker sense.

In 2 dimensions, we know that a deterministic limit v[p] = limn→∞ n−1Xn always exists. This
implies the following simple linear relationship between v[1][p] and v[2][p] that is independent of p
(see e.g. Table 1).

Corollary 4.2. For any 2-valued model with d = 2,

(v[2][p]− u
[2]
2 )(u

[1]
1 − u

[1]
2 ) = (v[1][p]− u

[1]
2 )(u

[2]
1 − u

[2]
2 ).

Proof. By (4.3), both sides equal limn→∞(u
[1]
1 − u

[1]
2 )(u

[2]
1 − u

[2]
2 )Nn[p]

n
. �

Corollary 4.3. For any 2-valued model, limn→∞ n−1Nn exists a.s. (but may be random).

Proof. If u1 �= u2 then the claim holds by (4.3). If u1 = u2 �= o, then n−1Xn → u1. Thus
regeneration times will exist, as in Theorem 1.4, which implies the convergence of n−1Nn by the
law of large numbers. Finally, if u1 = u2 = o then the random environment is balanced, in the
sense of Berger and Deuschel [2]. In that paper they establish the existence of an ergodic measure
Q, absolutely continuous with respect to P , and invariant for the environment as viewed from the
particle. This again is sufficient to imply convergence of n−1Nn. �

The above result can be generalized beyond the 2-valued case. When (2.3) does not hold (see
also Theorem 1.2) and the environment is at least 4-valued, it is possible that there are two or
more distinct arrangements of sites on which the walk can get stuck. In this case the asymptotic
frequency limn→∞ n−1N i

n exists a.s., but will depend on which trapping configuration the walk finds.
2-valued models can get trapped for long periods in a finite set of sites (forever if Go ∈ {e,−e}
a.s. for some e ∈ E), but the configurations which accomplish this are essentially trivial.

Theorem 4.1 gives monotonicity results that apply to all 2-valued i.i.d. random environments.
The logical next step is to investigate these questions when the local environment can take more
than 2 values. However, as soon as we have more than 2 possible environments, we also have multi-
ple different notions of monotonicity. Some possibilities are given below. In each case the environ-

ments are γ1, . . . , γk, with probabilities p1, . . . , pk, and we consider velocities v[i] = limn→∞ n−1X
[i]
n

and frequencies πi = limn→∞ n−1N i
n.

(i) Monotonicity of v[1] as we ↑ p1 and ↓ p2, holding fixed p3, . . . , pk.
(ii) Monotonicity of π1 as we ↑ p1 and ↓ p2, holding fixed p3, . . . , pk.
(iii) Monotonicity of the ratio π1/π2 as we ↑ p1 and ↓ p2, holding fixed p3, . . . , pk.
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Figure 2. The speed v[1](q) for q ∈ (0, 1) in Example 4.4, with α = .95 and p3 = .03
fixed, and p1 = .97q and p2 = .97(1 − q). The curve is the exact value, while each
point is an estimate based on 1,000 simulations of 20,000 step random walks, carried
out in R.

(iv) Monotonicity of v[1] or π1 as we vary p1, holding fixed the relative sizes of p2, . . . , pk.
(v) Monotonicity of v[1] or π1 as the weight to e1 within γ1 increases, holding all probabilities

p1, . . . , pk fixed.

We will give counterexamples to some of these below. In each case, (u
[1]
1 − u

[1]
2 ) · e1 > 0, so

monotonicity would hold in the 2-valued case. See [8] for a monotonicity result under additional
strong assumptions that allows for arbitrarily many values of the environment. See [11] for an
early example of non-monotonicity in random walk models.

Example 4.4. →α↑ →↑ ←: (a 3-valued counterexample to monotonicity of v[1] as in (i))

Let γ1(e1) = α = 1− γ1(e2), γ
2(e1) =

1
2
= 1− γ2(e2), and γ3(−e1) = 1. Fix p3 = p to be small,

and vary p1 and p2 by setting p1 = q(1−p) and p2 = (1−q)(1−p), where 0 ≤ q ≤ 1. The heuristic
is as follows: For q = 0 the speed is independent of α, and positive. For q = 1, the speed will be
greater than this value when α > 1

2
is moderate (since p is small), but declines to 0 because of

trapping as α ↑ 1. Therefore one expects to find an alpha so that the speeds with q = 0 and q = 1
match, and so as long as the speed is not actually constant, it will be non-monotone at some point
in between.

To actually prove non-monotonicity for this example, the most direct approach is to calculate
the velocity explicitly using the regeneration structure in the direction of e2 (as in Lemma 5.2).

In the notation of that result, we have that v[1] = E[X
[1]
T ]/E[T ], where T is the first time n that

X
[2]
n = 1. Let Γ ∈ (0, 1) be a random variable having the distribution of ωo(e1) conditional on the

event ωo �= γ3. Let GΓ ≥ 0 be a random variable such that conditionally on Γ, GΓ ∼ Geometric(Γ).
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Figure 3. Estimates of πi(q) for q ∈ (0, 1) in Example 4.5, with p3 = .9 and β = .01
fixed, and p1 = .1q and p2 = .1(1 − q). Solid, dashed and dotted lines correspond
to πi for i = 1, 2, 3 respectively. Each curve is based on 3,000 repetitions of 20,000
step random walks for each of 40 values of q between 0 and 1, carried out in R.

Let

η =E[Γ] = qα +
1− q

2
and ξ = E[GΓ] =

qα

1− α
+ 1− q.

Then (see [7] for details)

E[X
[1]
T ] =

(1− p)2η

1− (1− p)η
− p

1− p
and E[T ] = p(1 + 2ξ) +

p

1− p
+

1− p

1− (1− p)η
[1 + 2pξ] ,

One can then evaluate v[1] at various parameter values to find explicit examples satisfying the
claim of the Lemma. For example, the speed is non-monotone in q when p = .03 and α = .95 as
in Figure 2.

Example 4.5. (→↑ , ←→
β
, ↓) : (a 3-valued counterexample to monotonicity of π1 as in (ii))

Consider a 3-valued environment γ1, γ2, γ3 with probabilities p1 = q(1− p), p2 = (1− q)(1− p),
and p3 = p respectively, such that

γ1(e1) =
1

2
= γ1(e2), γ2(e1) = β = 1− γ2(−e1), γ3(−e2) = 1.

Here β is small, p3 = p is moderately large, and q varies from 0 to 1. The heuristic is as follows:
When q is sufficiently close to 0 there are very few traps, and the proportion of time spent at
γ1 sites is also close to 0. When q is sufficiently close to 1 there also are few traps, so since p is
moderately large, the proportion of time spent at γ1 sites is� .5. When q is intermediate between
these values, there are traps of the form

γ3

γ1 γ2
=

↓

→↑ ←→
β
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Figure 4. The quantities v[1](α) with p = .9 and π1(α) with p = .5, for α ∈ [0, 1],
in Example 4.6.

whence the proportion of time spent at γ1 sites is about 0.5. See Figure 3 for simulations that
support this heuristic, with p = .9 and β = .01;

Example 4.6. →α↑ ←: (a 2-valued counterexample to monotonicity of v[1] in α, as in (v))

γ1 = →α↑ is as in Example 4.5, while γ2 is the environment ←, i.e. γ2(−e1) = 1. With p1 = p

and p2 = 1− p, an elementary calculation as in Lemma 5.2 (see [7]) shows that

π1 =

(
α + (1− α)

(
p+

1

p
− 1

)
+

1− p

1− pα

)−1
, v[1] = απ1 − (1− π1).

Both are non-monotone in α for fixed suitable choices of p. For example, p = 1
2
implies that π1 = 1

2

for both α = 0 and α = 1, without actually being constant. Likewise we have v[1] ≤ 0 for both
α = 0 and α = 1, but for 0 < α < 1, v[1] will be > 0 when p is large enough. See Figure 4.

We have a conjectured counterexample for behaviour (iii), which we are still exploring.

4.2. Transience. In this subsection we begin by stating a trivial coupling criterion, which guar-
antees that the RWRE is transient when some related walk is transient. We apply this criterion
to prove transience results for some of our models.

Lemma 4.7. Suppose that a RWRE {Xn}n≥0 can be coupled with a random walk X ′n, such that
for all n,m ≥ 0, Xn = Xm ⇒ X ′n = X ′m. Then

• if {X ′n}n≥0 is transient (almost surely) then so is {Xn}n≥0
• if {X ′n}n<m ∩ {X ′n}n≥m = ∅ then {Xn}n<m ∩ {Xn}n≥m = ∅ (i.e cut-times for X ′ are also
cut-times for X).

A natural application of this result is the following result, that concerns the high-dimensional
analogue of the uniform RWRE of Example 1.1 (which we call the orthant model). Recall that
Ei = {e : γi(e) > 0}.
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Corollary 4.8. Let X = X(d, p) denote the uniform RWRE (γ1, γ2) with E1 = {ei, i = 1, . . . , d}
and E2 = −E1. Then

• when d ≥ 6, X is transient for all p, P[p]-almost surely, and

• when d ≥ 10, for each p, there exists v[p] with v[i][p] non-decreasing in p for each i = 1, . . . , d
such that P[p](n

−1Xn → v[p]) = 1.

Proof. Fix d ≥ 6 and define a d′-dimensional (with d′ = �d/2�) random walk {Yn}n≥0 by Y0 =
X0 = o, and for n ≥ 1

(4.4) Yn − Yn−1 =

⎧⎪⎨
⎪⎩
+ei, if Xn −Xn−1 ∈ {+e2i−1,−e2i : 2i ≤ d}
−ei, if Xn −Xn−1 ∈ {−e2i−1,+e2i : 2i ≤ d}
0, otherwise.

Then (Y
[1]
n , . . . , Y

[d′]
n ) = (X

[1]
n , . . . , X

[d]
n )A where A[i,j] = �j=2i−1 − �j=2i, i.e.

At =

⎛
⎜⎜⎝
1 −1 0 0 0 0 0 . . . 0
0 0 1 −1 0 0 0 . . . 0
0 0 0 0 1 −1 0 . . . 0
...

. . .
. . . 0

⎞
⎟⎟⎠ .

Clearly then, Yn = Ym whenever Xn = Xm. If d is even, then Y is a simple random walk in
d′ dimensions. If d is odd, then Y is a random walk with nearest neighbour steps but also a 1

d
probability of Y in place. Thus Y is transient when d′ ≥ 3, so X is transient when d ≥ 6 by
Lemma 4.7. When d′ ≥ 5, Y has well behaved cut-times. Therefore so does X, so it is shown in
[3] (see also [8]) that the velocity v[p] exists (for all p). The monotonicity claim now follows from
Theorem 4.1. �

Note that one should be able to achieve strict monotonicity of the speed for the above model in
high dimensions by using the method of [8].

4.3. Coupling with 1-d multi-excited random walks. For RWRE satisfying (2.3) such that
there is sometimes a drift in direction u but never a drift in direction −u the walk should be
almost surely transient in direction u with positive speed. The transience result can be proved by
considering the accumulated drift in direction u (which is non-decreasing in this case) and adapting
arguments appearing for example in Zerner [17], while we expect that a proof of the speed result
requires the extension of more technical machinery (such as Kalikow’s condition, or methods used
for studying excited random walk) to our non-elliptic setting. The authors have some such proofs
in preparation.

If we can live with additional strong assumptions, such as in the following Lemma (whose proof
is left as an exercise), it is relatively simple to show that the speed is positive.

Lemma 4.9. If ∃ε > 0 such that
∑

e∈E e · uωo(e) ≥ ε μ-a.s. then limn→∞ n−1Xn · u > 0.

In this paper we make what one might call intermediate assumptions, essentially that with
sufficiently large probability we have a sufficiently large local drift. This enables us to give a
relatively simple coupling proof that the speed is positive, by appealing to results from [6, 16, 1].
For convenience, we state the result for the direction u = e1 + · · ·+ ed, and we denote by ωx ∈ Zd

the vector with entries ω[i]
x = ωx(ei)− ωx(−ei). Therefore the quenched drift at x in the direction

u is
∑

e∈E e · u ωx(e) = ω[i]
x · u.
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Theorem 4.10. Fix d ≥ 2 and let u = e1 + · · ·+ ed = (1, . . . , 1). Suppose that μ(ωx · u ≥ 0) = 1
and μ(ωx ·u ≥ a) = b for some a, b > 0. If ab

1−b > 1 (resp. > 2) the RWRE X is transient (resp. has
positive speed) in direction u, P -almost surely.

Proof. If b = 1 the walk satisfies lim infn→∞ n−1Xn ·u > 0 almost surely. So suppose that b ∈ (0, 1).
Then the conditional measures μ+(ωo ∈ •) = μ(ωo ∈ • | ωx · u ≥ a) and μ−(ωo ∈ •) = μ(ωo ∈ • |
ωx ·u < a) are well defined. Let {W+

j,k}j∈Z,k∈N and {W−
j,k}j∈Z,k∈N be independent random variables

with laws μ+ and μ− respectively.
For j ∈ Z let Bj = {x ∈ Zd : x · u = j}, and let {Gj,k}j∈Z,k∈N and {Uj,k}j∈Z,k∈N be independent

random variables with laws ∼ Geometric(1− b) and ∼ U [0, 1] respectively. The random variables
Gj,k will indicate the numbers of previously unvisited vertices in Bj we have to visit before finding
the next new site such that ω · u < a. Let (u1, . . . , u2d) = (e1, . . . , ed,−e1, . . . ,−ed).

Let X0 = o. Define ωo = W+
o,1 if Go,1 > 1 and ωo = W−

o,1 otherwise. Given {Xj, ωXj
}j≤n, let

Yn =
∑

X
[k]
n = Xn · u, and let Ln(j) = |{i ≤ n : Yi = j}| be the local time of Y at j up to time n.

Set Ln = Ln(Yn). Then define

Xn+1 −Xn = ui, if
i−1∑
j=1

ωXn(uj) < UYn,Ln ≤
i∑

j=1

ωXn(uj), i = 1, . . . , 2d.

Given {Xk}k≤n+1 and {ωXk
}k≤n let

ωXn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ωXl
, if Xn+1 = Xl, l < n + 1

W−
Yn+1,r

, if Xn+1 /∈ {X0, . . . , Xn}, and

{Xk}k≤n+1 has visited r distinct sites in BYn+1 , and r ∈ {
∑s

u=1GYn+1,u}s∈N
W+

Yn+1,r
, if Xn+1 /∈ {X0, . . . , Xn}, and

{Xk}k≤n+1 has visited r distinct sites in BYn+1 , and r /∈ {
∑s

u=1GYn+1,u}s∈N.

The reader can check that X is then a random walk in a random environment ω that is i.i.d. with
ωo ∼ μ.

Note that the increments of Y are in {−1, 1} and that P(Yn+1 − Yn = 1|ωXn) =
∑d

j=1 ωXn(ui).
For at least the first Gj,1 − 1 visits of X to Bj , the environment seen by the walker has law
μ+ (not necessarily independently, as the same site could be visited more than once). Thus
for at least the first Gj,1 − 1 visits of Y to j, the next increment of Y has probability at least∑d

i=1 ω(ui) = (1 + ωx · u)/2 ≥ (1 + a)/2 of being +1. On subsequent visits, independent of the
history it has probability at least 1

2
of being +1.

Now consider a random walk Z on Z, with Z0 = 0, that evolves as follows. Given that Zn = j
and |{k ≤ n : Zk = j}| = r,

(4.5) Zn+1 − Zn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if r < Gj,1 and Uj,r ≤ (1 + a)/2

−1, if r < Gj,1 and (1 + a)/2 < Uj,r

1, if r ≥ Gj,1 and Uj,r ≤ 1
2

−1, if r ≥ Gj,1 and
1
2
< Uj,r

The reader can check that this has coupled Z and Y together so that for all j, r if Y goes left on
its rth departure from j then so does Z (if Z visits j at least r times).
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The random walk Z defined in (4.5) is a multi-excited random walk in a random cookie envi-
ronment υ such that {υ(i, ·)}i∈Z are i.i.d. with υ(0, r) = (1 + a)/2 for r < G0,1 and υ(0, r) = 1

2
for

r ≥ G0,1 (i.e. a Geometric(1− b) number of cookies at each site). By [16, 1], Z is transient to the
right (resp. has positive speed) if and only if α = E[

∑
k≥1(2υ(o, k)− 1)] > 1 (resp. > 2). Now

E

[∑
i≥1

(2υ(0, i)− 1)

]
≤ E

[
G0,1∑
i=1

a

]
=

ab

1− b
,

so Z satisfies the claim of the proposition. By [6, Theorem 1.3], under this coupling, if Z is transient
to the right then so is Y , moreover lim supn→∞

Zn

n
≤ lim supn→∞

Yn

n
and the result follows (using

Theorem 1.4 to conclude that Y has a limiting speed). �
In particular, from Theorem 4.10 we conclude that the uniform RWRE has positive speed in

direction u = (1, 1) in the following cases: (�→ ,↔) and (�→ , �←→) when p > 6
7
(a = 1

3
and b = p);

and (→, �←→) and (→↑ , �←→) when p > 2
3
(a = 1 and b = p).

5. Calculation of speeds for uniform RWRE

There are many RWRE models for which it is actually obvious that transience holds and that
speeds exist, due to the presence of a simple renewal structure (via a forbidden direction). In a
number of cases, speeds can be calculated explicitly, and continuity and other properties of this
speed as a function of certain parameters can be observed. Example 4.4 is one such case, but this
is somewhat messy. The calculations all make use of the following lemma, whose proof is a simple
application of the LLN/Renewal Theorem.

Lemma 5.1. Assume (2.3) and suppose that μ(↓∈ Go) = 0 but μ(↑∈ Go) > 0. Then the RWRE is
transient in direction e2, P -almost surely. Let T be the first time the RWRE follows direction e2.
If E[T ] < ∞ then Xn has an asymptotic speed v = (v[1], . . . , v[d]), in the sense that P (n−1Xn →
v) = 1. Moreover, v[i] = E[X

[i]
T ]/E[T ].

The class of 2-valued uniform RWRE in 2-dimensions with a forbidden direction is a collection
of relatively simple examples where v can be calculated and continuity (as a function of p) and
slowdown observed. We will sketch the argument in the case of (→↑ ,←↑) and will give a table,
summarizing the results we know of in other 2-valued 2-dimensional models. Readers are referred
to [7] for the detailed calculations in other cases.

Lemma 5.2. Consider the uniform RWRE model (→↑ ←↑), i.e. μ({↑,→}) = p and μ({↑,←}) =
1− p. The asymptotic speed is (v[1], v[2]) with

v[1] =
(2p− 1)(p2 − p + 6)

6(2− p)(1 + p)
, v[2] =

1

2
.

Proof. For n ≥ 0, let τn = inf{m ≥ 0 : X
[2]
m = n}. Then for i ≥ 1, Ti = τi − τi−1 are

i.i.d. Geometric(1/2) random variables (with mean 2), and Yi = X
[1]
τi−1 − X

[1]
τi−1 are i.i.d. ran-

dom variables, independent of the {Ti}i≥1. So E[Ti] = 2 and v[2] = 1/2. As in Lemma 5.1 we have
(almost surely as n→∞)

Y
[1]
n

n
→ E[Y1]

E[T1]
=

E[Y1]

2
.



22 HOLMES AND SALISBURY

Letting Y = Y1, it remains to calculate E[Y ].
For j ≥ 1, we can have Y = j three ways – reaching no ←↑ vertex, reaching a ←↑ vertex at

(j, 0), or reaching a ←↑ vertex at (j + 1, 0). Thus

P (Y = j) = pj+1
(1
2

)j+1
+ pj(1− p)

∞∑
n=0

(1
2

)j+2n+1
+ pj+1(1− p)

∞∑
n=0

(1
2

)j+2n+3

=
pj(4− p2)

3 · 2j+1
.

Likewise, we can have Y = −j, j ≥ 1 three ways, depending on where if anywhere Xn reaches
a →↑ vertex, giving P (Y = −j) =

(
(1 − p)j(4 − (1 − p)2)

)
/
(
3 · 2j+1

)
. The case j = 0 would be

similar, but is not needed. Summing over j gives that

E[Y ] =
p(4− p2)

12
· 1

(1− p/2)2
− (1− p)(4− (1− p)2)

12
· 1

(1− (1− p)/2)2

=
p(2 + p)

3(2− p)
− (1− p)(3− p)

3(1 + p)
=

(2p− 1)(p2 − p+ 6)

3(2− p)(1 + p)
.

�

Table 1 summarizes what we know about uniform RWRE in 2-dimensional 2-valued random
environments. Explicit speeds are calculated as in Lemma 5.2 (for details, consult [7]). All other
conclusions follow immediately from results stated in the paper. Note that many of the conjectures
would follow if we knew that speeds were continuous in p and that monotonicity was strict.

Note that there is a related table in [4], giving percolation properties for the directed graphs C
and M. The latter includes 2-valued environments such as ( �←→, ·) (site percolation), in which
one of the possible environments has no arrows. These environments do not appear in the present
table, because (as remarked in Section 1.1), the walk gets stuck on a finite set of vertices (in this
case 1 vertex) the RWRE setup we have chosen requires that motion be possible in at least one
direction.

Notes to Table 1
1 As indicated following Lemma 2.5, it follows from results of Berger & Deuschel [2] that M is
recurrent ∀p.
2 Bounds on the critical probability are given in [4]. Improved bounds are in preparation.
3 Improved ranges of values giving transience and speeds are in preparation.
4 Martin Muldoon has pointed out that this can also be expressed in terms of q-hypergeometric
functions.
5 We do not have a closed form expression for this. But asymptotic expressions are feasible.
6 An expansion as in the case (←→↓ →) should be possible.
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γ1, γ2 Random walk Reference
↑ → v = (1− p, p). As in Lemma 5.2
↑ ↓ Stuck on two vertices. Lemma 2.3

↔ ↑ v =
(
0, (1−p)2

p+(1−p)2

)
. As in Lemma 5.2

↔ → v =
(

1−p
1+p

, 0
)
. As in Lemma 5.2

↔ � v = (0, 0). Symmetry1

→↑ ↑ v =
(

p
2
, 1− p

2

)
. As in Lemma 5.2

→↑ ←↑ v =
(

(2p−1)(p2−p+6)
6(2−p)(1+p)

, 1
2

)
. As in Lemma 5.2

→↑ ↔ v =
(

1
p2

+ (1−p)2
2p(1−p+p log p)

)−1
· (1, 1). As in Lemma 5.2

→↑ ← v =
(

p(2−p)
2+3p−2p2−p3

)
· (3, 1) + (−1, 0). As in Lemma 5.2

→↑
←↓ v[1] = v[2] ↑ in p. Transient2 for p ≈ 0, 1. Cor. 2.9 / Thm. 4.1

Conjecture: v �= 0 for p �= 1
2
, Recurrent when p = 1

2

←→↓ ↓ 1
v[2]

= 8p(1−p)
1+
√
5
− 1− 2p− 4(1−p)2(5+

√
5)

p(1+
√
5)

∞∑
n=2

pk

1+2−k(3+
√
5)k

. As in Lemma 5.24

←→↓ → − 1
v[2]

= 4− p− 5+
√
5

2
(1− p)2Θ(pγ) + (1−p)[3+

√
5−(1−p)(5+

√
5)Θ(p)]2

(3+
√
5)[2−(1−p)(5+

√
5)Θ(pγ)]

As in Lemma 5.24

where γ = 3+
√
5

2
and Θ(z) =

∑∞
n=0

zn

γ2n+1+1
. v[1] = 1− 3v[2].

←→↓ ↑ v[1] = 0, v[2] ↓ in p. Transient2 for p ≈ 0. Cor. 2.8
Conjecture: ∃!p( �= 3/4) s.t. v[p] = 0. Recurrent for this p.

←→↓ ↔ v[1] = 0, v[2] < 0 for p > 0. v[2] strictly ↓ in p. As in Lemma 5.25
←→↓ � v[1] = 0, v[2] ↓ in p. Transient3 for p > 3

4
, v[2] < 0 for p > 6

7
. Thm. 4.1 / Thm. 4.10

Conjecture: v[2] < 0 for p > 0.
←→↓ →↑ 3v[2] = 5v[1] − 1. v[1] ↓ in p. Thm. 4.1 / Cor. 4.2
←→↓ ←↓ v[1] = 1 + 3v[2] As in Lemma 5.26
←→↓ �→ v · (1,−1) = 1

3
, v · (1, 1) ↓ in p. Thm. 4.1 / Cor. 4.2

←→↓ ←→↑ v[1] = 0, v[2] ↓ in p. Thm. 4.1 / Cor. 4.2
Conjecture: v[2] �= 0 for p �= 1

2
. Recurrent when p = 1

2
.

�←→ ↑ v[1] = 0, v[2] ↓ in p. Transient3 for p < 1
2
, v[2] > 0 for p < 1

3
. Thm. 4.1 / Thm. 4.10

Conjecture: v[2] > 0 for p < 1.
�←→ →↑ v[1] = v[2] ↓ in p. Transient3 for p < 1

2
, v[1] > 0 for p < 1

3
. Thm. 4.1 / Thm. 4.10

Conjecture: v[1] > 0 for p < 1.
�←→ ↔ v = (0, 0) Symmetry1.
�←→ ←→↓ v[1] = 0, v[2] ↑ in p. Transient3 for p < 1

4
, v[2] < 0 for p < 1

7
. Thm. 4.1 / Thm. 4.10

Conjecture: v[2] < 0 for p < 1.

Table 1. Table of results for uniform RWRE in 2-dimensional 2-valued degenerate
random environments, where the first configuration occurs with probability p ∈ (0, 1)
and the other with probability 1− p.
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